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In this work, a strategy capable of simulating polydisperse flows in complex geometries is
employed where the fluid transport equations are solved in an Eulerian framework and the
dispersed phase is represented as Lagrangian particles. Volume filtered equations for the
carrier phase are derived in detail for variable density flows, and all unclosed terms are dis-
cussed. Special care is given to the interphase coupling terms that arise, in order to ensure
that they are implemented consistently and that they converge under mesh refinement.
This provides the flexibility of using cell sizes that are smaller than the particle diameter
if necessary. Particle collisions are handled using a soft-sphere model that has been mod-
ified for parallel efficiency. Simulations are carried out for a number of laboratory-scale
configurations, showing excellent agreement with experiments.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

Suspensions of solid particles in a carrier fluid are common in many engineering applications, including sediment trans-
port, gas and liquid fluidized bed reactors, and turbulent risers. Such flows are ubiquitous during biomass thermochemical
conversion, and with recent interests in the production of renewable fuels, great effort has been put forward in understand-
ing and predicting such processes. The presence of the dispersed phase leads to a wide range of length and time scales that
need to be considered. Consequently, a relatively large number of modeling approaches have been developed (e.g., [1–6]).
Whenever possible, such models should be based on well-defined physical parameters from the underlying microscale flow
physics, and not derived from interpretations of a specific flow regime [1]. With the rapidly growing computational re-
sources, new opportunities arise to develop more reliable and predictive computational fluid dynamics (CFD) models for
exploring the complex behavior of dispersed multiphase flows.

In this work, we consider a dispersed phase that consists of smooth, spherical particles. A particle p is characterized by its
position xpðtÞ, its volume VpðtÞ, and its velocity upðtÞ at time t. Although the methods described in this paper assume solid
particles, most of the formulation could be extended to droplets and bubbles as well. For an ensemble of np particles, it is
convenient to define a phase space x ¼ x1;x2; . . . ;xnp ;u1;u2; . . . ;unp ;V1;V2; . . . ;Vnp

� �
. The phase space contains all possible

values for each degree of freedom, and each particle is represented by a point in phase space [7]. The stochastic nature of
the particle phase is described by a Liouville equation for the multiparticle density function, f t;x;xð Þ, given by
@f
@t
þ up �

@f
@xp
þ @

@up
f

Fp

mp

� �
¼ C; ð1Þ
where Fp represents external forces acting on each particle (e.g., gravity, drag, added mass, etc.), mp is the mass of each par-
ticle, and C is the collision operator. Note that Eq. (1) implies a summation over all particles. Due to the large number of
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independent variables associated with f in a three-dimensional flow, a direct solution is usually intractable, hence various
mathematical approximations are made to arrive at models capable of simulating systems of interest. In a recent review pa-
per, Fox [1] summarizes such modeling strategies, in addition to providing a systematic approach for developing large-eddy
simulation (LES) tools starting from microscale physics. Another noteworthy review on that topic is due to Balanchandar and
Eaton [2], where the current state-of-the-art experimental and computational techniques for turbulent dilute dispersed
flows are discussed.

Two common approaches for modeling dispersed phase flows include Euler-Euler (EE) and Euler–Lagrange (EL) methods.
Note that Pai and Subramaniam [8] established consistency relationships between the two representations in the framework
of a probability density function formalism, presented advantages and limitations of each approach, and identified unclosed
terms that arise. EE representations reduce Eq. (1) to the one-particle density function appearing in the kinetic equation [9–
11]. In general, the kinetic description is unclosed and requires mesoscale models for the collision operator. EE methods
approximate the kinetic equation by considering a set of moments of f, and solve both the fluid and particle-phase on a com-
mon Eulerian grid. In the small Knudsen number (highly collisional) limit with an underlying assumption that the flow is
nearly at equilibrium, the particle density function is close to Maxwellian and a Chapman–Enskog expansion can be used
to derive a two-fluid model (TFM) using ensemble or volume averaging [12–15]. This approach leads to particle phase trans-
port equations that closely resemble the Navier–Stokes equations using moment closures obtained from kinetic theory. TFM
greatly reduces the cost of simulating large-scale systems as it does not require interactions at the particle scale to be re-
solved. As a result, TFM has been used in a large number of studies, for example in dense fluidized bed reactors [16,17]
and riser flows in vertical channels [18–22]. However, in the dilute limit, the constitutive models fail to correctly describe
important features of the flow. Desjardins et al. [23] showed the challenges EE formulations face for finite Knudsen number
and non-equilibrium flows, for which particle trajectory crossings play an important role and higher moments of the particle
number density must be considered to yield an accurate result. Several studies proposed solutions to overcome the limita-
tions of standard TFM. Simonin [24] used a moment method based on the Grad [25] approach to study non-equilibrium di-
lute gas-particle flow behavior. Desjardins et al. [23] proposed to approximate the kinetic equation using a two-node
quadrature approach based on the quadrature method of moments [26], leading to a method capable of handling highly
non-equilibrium, finite-Stokes number flows, including impinging jets, jet crossing, and particle rebound off walls, which
previously could not be treated accurately with EE formulations. Following this work, Passalacqua et al. [27] implemented
a third-order quadrature-based moment method coupled with a fluid solver to deal with dense flows. They demonstrated
the importance of considering the effect of the local particle Knudsen number, which they found to be large if solid packing
is small or the particle Mach number is large, which is the case in many dispersed two-phase flows. Yuan and Fox [28] devel-
oped a conditional quadrature method of moments (CQMOM) based on 1-D adaptive quadrature of conditional velocity mo-
ments to improve the accuracy of the quadrature-based moment method. They applied CQMOM to a range of problems
involving particle trajectory crossing and collisions. While EE methods have been widely successful, in particular due to their
computational efficiency when solving systems containing a large number of particles, statistical and physical closures con-
tinue to pose a challenge.

Euler–Lagrange (EL) strategies provide an alternative framework with the potential of simpler closures. EL methods rep-
resent the dispersed phase in a Lagrangian manner by discretizing the multiparticle density function introduced earlier into
a number of individually tracked stochastic particles. As expected in Discrete Simulation Monte Carlo (DSMC) approaches, EL
methods can yield very accurate solutions, though they can require a large number of stochastic particles to control statis-
tical errors [29]. A few examples of applications of EL methods within the literature include simulations of impinging stream
reactors [30], cluster formation of gas–solid flows in vertical channels [31,32], and dense fluidized beds [32,33]. It is typical
in EL simulations to consider as may particles as there are physical particles, or a smaller number of computational particles
in order to reduce simulation cost. Garg et al. [34] demonstrated that if the spatial distribution of particles becomes highly
non-uniform, regions with fewer particles have higher statistical error, which might prevent numerical convergence of the
interphase momentum transfer term. They proposed to dynamically ensure that the number of stochastic particles per cell
remains nearly constant and showed much improved convergence. However, this strategy remains to be extended to collid-
ing particles. Similarly, Salman and Soteriou [35] demonstrated limitations of the EL approach in their study of evaporating
sprays. They reviewed typical interpolation schemes used to couple the two phases and showed that such procedures do not
converge under mesh refinement. In fact, most existing EL coupling schemes require the Eulerian mesh to be an order of
magnitude larger than the diameter of the largest particle, potentially preventing the capture of dynamically important
mesoscale processes. This can be problematic when dealing with non-uniform meshes or a dispersed phase with a wide size
distribution.

Despite these limitations, a single realization of DSMC accounts discretely for all individual particle processes such as drag
and collisions, and can therefore provide much needed insights in the physics of particle-laden flows, and even help guide
the development of improved EE closures. This level of modeling is referred in the literature as discrete element models
(DEM) [36]. The coupling of DEM with a finite-volume description of the gas phase based on the Navier–Stokes equations
was first reported by Tsuji et al. [37] and Hoomans [38] using a soft-sphere [36] and hard-sphere [39] collision models,
respectively. Deen [4] provided a detailed review on DEM for the study of gas–solid flows in fluidized bed reactors.

Coupling DEM with the spatially-filtered equations of motion for the gas phase is the strategy that we follow in this paper.
In the next section, we start from the point wise variable density Navier–Stokes equations, coupled to Newton’s second law
for the particles, and derive volume filtered continuity, momentum, and scalar transport equations appropriate for the EL
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simulations. All unclosed terms and assumptions are given explicitly and discussed. Interphase coupling is discussed in de-
tail in Section 3, and a dual filter approach is introduced to guarantee convergence under mesh refinement. Coupling with a
conservative immersed boundary method [40] to account for realistic geometries is described in this section as well. A soft
sphere model [36] accounts for particle collisions. This model has been modified compared to other versions in the literature
in order to recover the correct close-packing limit, as well as to account for inter-particle friction and rotation in a scalable
manner. The collision model and its parallel implementation are presented in Section 4. Section 5 summarizes the imple-
mentation of the numerical approach and presents parallel performance. Finally, in Section 6, several numerical tests are
conducted of lab-scale particle-laden flows for validation purposes. In this work, all simulations are performed using
NGA, an arbitrarily high order multi-physics CFD code [41]. It is shown that the overall strategy is capable of producing sim-
ulations of realistic, three-dimensional polydisperse flows on high core counts.

2. Mathematical description

This section presents the equations employed to describe the flow of solid particles in a low Mach number, variable den-
sity carrier fluid. We begin by presenting the point wise equations of motion for each phase. These equations require resolv-
ing the flow around each individual particle, which is excessively expensive for engineering systems of interest.
Consequently, we derive a set of volume filtered equations for a variable density fluid, which can be solved on a scale larger
than the particle diameter. The particles are solved in a Lagrangian framework described by Newton’s laws of motion. The
two phases are fully coupled through momentum exchange terms. Unclosed terms that arise from the filtering approach are
presented and discussed.

2.1. Point wise description

The carrier fluid is described by the Navier–Stokes equations for a low Mach number, variable density flow. Continuity is
given by
@qf

@t
þr � qf uf

� �
¼ 0; ð2Þ
where qf and uf are the point wise fluid density and velocity, respectively. Conservation of momentum is expressed as
@

@t
qf uf

� �
þr � qf uf � uf

� �
¼ r � sþ qf g; ð3Þ
where g is the acceleration due to gravity, and s is the point wise value of the fluid stress tensor, given by
s ¼ �pIþ l ruf þruT
f �

2
3
r � uf
� �

I
� 	

: ð4Þ
The hydrodynamic pressure and dynamic viscosity coefficient are given by p and l, respectively. I is the identity tensor.
Interactions with the solid phase are incorporated by imposing no-slip and no-penetration boundary conditions at the sur-
face of each particle.

The displacement of an individual particle p is calculated using Newton’s second law of motion,
mp
dup

dt
¼ f inter

p þ Fcol
p þmpg: ð5Þ
The particle mass is defined by mp ¼ pqpd3
p=6, where qp and dp are the particle density and diameter, respectively. Fcol

p is the
particle collision force, which will be described in detail in Section 4. The force f inter

p exerted on a single particle p by the sur-
rounding fluid is given by the integral of the stress tensor over the surface of the particle,
f inter
p ¼

Z
Sp

s � ndS; ð6Þ
where n is the outward unit normal vector of the particle surface Sp. This term is discussed further in Section 2.5.
The angular momentum of the particle, xp, is computed by taking the cross product of the position vector outward from

the particle with Eq. (5), giving
Ip
dxp

dt
¼
Z
Sp

dp

2
n� s � nð Þdy þ

X
j

dp

2
n� fcol

t;j!p; ð7Þ
where fcol
t;j!p is the tangential component of the collision force of particle j acting on particle p. This term will be made explicit

later. Ip is the particle’s moment of inertia, given for a sphere by
Ip ¼
mpd2

p

10
: ð8Þ
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2.2. Volume filtering operators

In order to account for the effect of particles without requiring to resolve the fluid-phase equations on the scale of the
particle surface, the point wise fluid equations can be split into microscale processes, i.e., processes that take place on the
scale of a particle and below, and meso/macro-scale processes, i.e., processes that take place on a scale much larger than
the particle size. Anderson and Jackson [42] detail such an approach for particle-laden flows by applying a local volume fil-
tering operator to the Navier–Stokes equations, thereby replacing the point variables (fluid velocity, pressure, etc.) by
smoother, locally filtered fields. This local volume filtering strategy is employed in this work. Another strategy based on
ensemble averaging is proposed by Zhang and Prosperetti [43], which leads to comparatively similar equations.

We begin by defining a filtering kernel g with a characteristic length df , such that gðrÞ > 0 decreases monotonically with
increasing r, and is normalized such that its integral over the entire physical space is unity. The local voidage at a point x and
time t is defined as
ef ðx; tÞ ¼
Z
Vf

gðjx� yjÞdy; ð9Þ
where V f indicates that the integral is taken over all points y occupied by the fluid. Although this quantity is a function of
both space and time, we will simply use ef throughout to represent the local fluid volume fraction. Similarly, the particle
volume fraction can be computed by taking the volume integral of the filtering kernel over all space occupied by the solid
phase. Since g varies little within a single particle, it can be taken outside of the integral and the particle volume fraction can
be expressed as
epðx; tÞ ¼ 1� ef �
Xnp

i¼1

gðjx� xijÞV i; ð10Þ
where V i, as previously mentioned, is the volume of particle i, and np is the number of particles.
Let aðx; tÞ be any point property of the fluid of arbitrary tensorial order, and a0ðx; tÞ denote its residual field, such that
aðx; tÞ ¼ aðx; tÞ þ a0ðx; tÞ; ð11Þ
where the volume filtered field aðx; tÞ is computed by taking the convolution product with the filtering kernel g, giving
ef aðx; tÞ ¼
Z
Vf

aðy; tÞgðjx� yjÞdy: ð12Þ
Due to surface contributions of the solid particles, there is no commutation between filtering and differentiation. Conse-
quently, filtering derivatives of point variables will lead to additional terms in the form of integrals of the point wise quantity
about the surface of the particle. Volume filtering the gradient, divergence, and time derivative of a point property of the
fluid are respectively given as
Z

Vf

raðy; tÞgðjx� yjÞdy ¼ r ef aðx; tÞ
� �

�
Xnp

i¼1

Z
Si

n� aðy; tÞgðjx� yjÞdy; ð13Þ

Z
Vf

r � aðy; tÞgðjx� yjÞdy ¼ r � ef aðx; tÞ
� �

�
Xnp

i¼1

Z
Si

n � aðy; tÞgðjx� yjÞdy; ð14Þ
and
 Z
Vf

@aðy; tÞ
@t

gðjx� yjÞdy ¼ @

@t
ef aðx; tÞ
� �

þ
Xnp

i¼1

Z
Si

n � uiaðy; tÞgðjx� yjÞdy; ð15Þ
where Si represents the surface of particle i. A detailed derivation can be found in the work of Anderson and Jackson [42]. In
order to reach these expressions it is assumed that the shortest distance from the location of the point property to the sur-
face bounding the fluid is significantly larger than the radius of g. Treatment for solving filtered quantities near walls will be
discussed in Section 3.2. For simplicity, all fluid properties in the remainder of the paper will be assumed to be a function of
space and time and the parentheses will be left out.

For flows with density changes, such as those found in chemically reacting systems, it is often convenient to introduce a
Favre filtering operation (see for example [44]). The density-weighted volume filtered quantity ea is given by
ea ¼ ef qf a
ef qf

; ð16Þ
where qf is the volume filtered fluid density. Any fluid property a may be split into its density-weighted and residual com-
ponents a ¼ ea þ a00.
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The definitions above are most useful when constructing the equations of motion if the filtered variables are invariant
with the chosen filtering kernel g and the filter length df . Spatial variations in point properties manifest from scales on
the order of the particle diameter and interparticle spacing (from boundary layer effects and collisions) to scales comparable
to the dimensions of the complete system. Choosing df such that the local filtered variables are unaffected by the filtering
process is not trivial. Instead, we allow the filter length to be small enough for the mesoscale flow features to be unaffected,
while maintaining a filter length large enough for microscale processes such as drag to be appropriately modeled by classical
models. In the context of particle-laden flows, df proportional to several particle diameters meets this criterion.

2.3. Volume filtered equations of motion

Filtering Eq. (2) by multiplying by gðjx� yjÞ and integrating over all fluid points yields the continuity equation in terms of
the volume filtered, density weighted velocity,
@

@t
ef qf

� �
þr � ðef qf

fuf Þ ¼ �Sq: ð17Þ
Using the fact that uf jSi
¼ ui þ dri

dt n., where dri
dt is the rate of change of the radius of particle i; Sq is given by
Sq ¼
Xnp

i¼1

_migðjx� xijÞ; ð18Þ
where
_mi ¼ �qf jSi
Si

dri

dt
: ð19Þ
When considering phase change, a particle may change size due to evaporation or devolatilization processes. However, this
term vanishes when considering inert particles.

With respect to the momentum balance, volume filtering the non-linear convective term requires special care. Applying
Eq. (14)–(16) to the left-hand-side of Eq. (3) gives
Z

Vf

gðjx� yjÞ @

@t
qf uf

� �
þr � ðqf uf � uf Þ

� 	
dy ¼ @

@t
ef qf

fuf

� �
þr � ef qf

fuf �fuf

� �
þr � Ru � Squ; ð20Þ
where
Ru ¼ ef qf
gu00f � u00f ð21Þ
is a residual stress akin to a Reynolds stress resulting from volume filtering. The momentum source term Squ accounts for the
momentum flow rate from the particle surface due to mass transfer, which simplifies to
Squ ¼
Xnp

i¼1

_miuigðjx� xijÞ: ð22Þ
Substituting a ¼ s in Eq. (14) and decomposing the point wise stress tensor into its filtered and residual components gives
Z
Vf

gðjx� yjÞr � sdy ¼ r � ef s
� �

�
Xnp

i¼1

Z
Si

gðjx� yjÞn � sdy �
Xnp

i¼1

Z
Si

gðjx� yjÞn � s0 dy: ð23Þ
Applying Gauss’ theorem to the second term on the right-hand-side of Eq. (23) and assuming both the filtered stress tensor
and its derivatives vary little over distances comparable with the radius of g, the surface integral of the volume filtered stress
tensor becomes
Xnp

i¼1

Z
Si

gðjx� yjÞn � sdy � s � ref : ð24Þ
Now considering the last term in the right-hand-side of Eq. (23), the filtering kernel gðjx� yjÞmay be replaced by gðjx� xijÞ
and taken outside of the integral since the filtered value of s0 taken over Si is small compared with variations about its fil-
tered value, and these variations are smooth. Using this and putting Eq. (24) in Eq. (23) yields
Z

Vf

gðjx� yjÞr � sdy ¼ efr � s�
Xnp

i¼1

gðjx� xijÞ
Z
Si

s0 � ndy: ð25Þ
For simplicity, the filtered stress tensor s can be written as
s ¼ �pIþ l ruf þruf
T � 2

3
r � uf

� �
I

� 	
þ Rl; ð26Þ
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where Rl arises from filtering the velocity gradients in s. Note that when dealing with reactive flows, l may vary signifi-
cantly and will contribute additional terms to Rl.

We now exploit the similarities between Eq. (6) and Eq. (25) to elucidate the nature of the surface integral term on the
right-hand-side of Eq. (25). Using the divergence theorem and the fact that r � s varies little over the scale of a particle, Eq.
(6) can be expanded as
f inter
p ¼

Z
Sp

s � n dy ¼
Z
Sp

sþ s0ð Þ � ndy ¼
Z
Vp

r � sdy þ
Z
Sp

s0 � ndy � Vpr � sþ
Z
Sp

s0 � ndy: ð27Þ
We now multiply through by gðjx� xpjÞ, and sum over all particles. The left-hand-side of Eq. (27) is used to define the inter-
phase momentum exchange Finter,
Finter ¼
Xnp

i¼1

gðjx� xijÞf inter
i : ð28Þ
Now considering the first term on the right-hand-side of Eq. (27), r � s may be taken outside the summation, and using Eq.
(10) this term reduces to
Xnp

i¼1

gðjx� xijÞV ir � s ¼ 1� ef
� �

r � s: ð29Þ
Finally, combining Eqs. 25, 27, 28, and 29 yields
Z
Vf

gðjx� yjÞr � sdy ¼ r � s� Finter: ð30Þ
From the above formulation, the momentum equation is then given by
@

@t
ef qf

fuf

� �
þr � ef qf

fuf �fuf

� �
¼ r � s� Ruð Þ þ ef qf g� Squ � Finter: ð31Þ
2.4. Filtered scalar transport equation

A similar approach can be used to describe a generalized conservative transport equation, which is relevant when dealing
with reactive flows. Given a point wise scalar quantity, /, its transport equation is given by
@qf /

@t
þr � ðqf uf /Þ ¼ r � Dr/ð Þ; ð32Þ
where D is the diffusion coefficient. Multiplying through by g and integrating the left-hand-side of the above equation yields
Z
Vf

gðx� yÞ
@qf /

@t
þr � ðqf uf /Þ

� 	
dy ¼ @

@t
ef qf

e/� �
þr � ef qf

fuf
e/� �
þr � R/ þ Sq/; ð33Þ
where
R/ ¼ ef qf
gu00f /00 : ð34Þ
Assuming the scalar quantity at the surface of particle i;/jSi
, is uniform, the source term is given by
Sq/ ¼
Xnp

i¼1

_mi/jSi
gðjx� xijÞ ð35Þ
Filtering the right-hand-side of Eq. (32) gives
Z
Vf

r � Dr/ð Þgðjx� yjÞdy ¼ r � ef Dr/
� �

� Sr/; ð36Þ
where
Sr/ ¼
Xnp

i¼1

Z
Si

n � r/Dgðjx� yjÞdy: ð37Þ
Note that the source term Sr/ vanishes when considering a Neumann boundary condition at the surface of the particle,
namelyr/ � njSi

¼ 0.. Using the same arguments described when handling the fluid stress tensor to rewrite Dr/, the filtered
general scalar transport equation is given by
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@

@t
ef qf

e/� �
þr � ef qf

fuf
e/� �
þr � R/ ¼ r � ef Dr/þ RD

� �
� Sq/ � Sr/; ð38Þ
where RD is an unclosed term defined by RD ¼ Dr/� Dr/.

2.5. Closures

As a result of filtering the equations of motion for the fluid phase, sub-grid terms (Eqs. (21), (26) and (27)) arise and re-
quire closure. The general problem consists of formulating expressions for these terms based on filtered quantities, applica-
ble for a wide range of particle Stokes and Reynolds numbers from the dilute to dense limit. First, Ru and R/ are similar to
Reynolds stresses and involve velocity fluctuations about their filtered values. For classical turbulence the Reynolds stress is
closed via a turbulent viscosity model, given by
Ru � lt ruf þruf
T

� �
; ð39Þ
where lt is the turbulent viscosity. In the context of particle-laden flows, the turbulent kinetic energy cascade is more com-
plicated than with single-phase turbulence [45]. For varying particle-phase Stokes numbers and concentrations, the presence
of the disperse phase can either augment or attenuate turbulence relative to single-phase turbulence [3]. Some studies have
shown that a dilute concentration of particles located inside the fluid boundary layer suppresses the generation of turbu-
lence, while larger particles contribute to Reynolds stresses [46]. For dense flows, fluidization can be generally associated
with two kinds of turbulence; velocity fluctuations that arise from granular agitation at the particle scale (via interparticle
collisions and wake instabilities), as well as from mesoscale features such as particle clustering and bubbles, and it is there-
fore incorrect to use standard turbulence models to close this term. For the majority of the work presented in this paper, we
will assume that the carrier-phase velocity fluctuations do not contribute significantly to the flow dynamics, allowing us to
neglect Ru. However, in certain cases, such as spouting fluidized beds where fluid-phase Reynolds numbers may be very large
(above to 58,000 in some lab-scale experiments [47]), Ru requires proper closure. For these cases, a dynamic Smagorinsky
model [48,49] based on Lagrangian averaging [50] is employed to estimate lt . Although this model does not account for tur-
bulence modulation by the particles, it will be highlighted later that the cases considered exhibit high turbulent viscosity in
regions free of particles.

Filtering the point wise velocity gradients in the viscous term leads to unclosed stresses, which can be handled in several
ways, such as combining them with the stress tensor [42], accounting for them through the introduction of an effective vis-
cosity [43,5], or simply neglecting them [51]. To deal with the unclosed term Rl in the filtered fluid stress tensor, an effective
viscosity l� is introduced, giving
Rl � l� ruf þruf
T � 2

3
r � uf

� �
I

� 	
; ð40Þ
where l� was derived by Gibilaro [52] for fluidized beds, and is given by
l� ¼ l e�2:8
f � 1

� �
: ð41Þ
The force f inter
p that couples the individual particles and the carrier fluid comes from the momentum exchange at the particle

surface, which has been expanded in Eq. (27) to give
f inter
p � Vpr � sþ

Z
Sp

s0 � ndS: ð42Þ
Eq. (42) can be better understood by considering a flow past a single, isolated particle. In that case, s varies on the scale of the
particle diameter, and therefore s is approximately constant for df � dp. Then r � s vanishes, and it becomes clear thatR
Sp

s0 � ndS represents the drag force due to the uniform flow, which we will write
Z
Sp

s0 � ndS � fdrag
; ð43Þ
where fdrag can be obtained though classical models. Other contributions to the surface integral might include added mass,
the Basset history term, lift and Faxen forces. For gas–solid flows, the added mass term becomes negligible and is therefore
not included in the simulations presented herein. However, when the density difference between fluid and particles de-
creases, the volume of fluid the particle needs to displace as it moves through it will provide non-negligible acceleration
(or deceleration). Zhang and Prosperetti [14] give an exact expression for the added mass term for an inviscid fluid at low
particle concentrations. At higher values of concentration, they include a correction to account for the local volume fraction.
They also derive an expression for the lift force for spherical particles in an inviscid fluid. A quite different expression is given
by Saffman [53] for viscous flows at low Reynolds numbers.

The drag model of Tenneti et al. [54] is employed in this work, which was derived from particle-resolved direct numerical
simulation. An ensemble-averaging approach was used to calculate the unclosed average interphase momentum transfer of
flow past random fixed configurations of monodisperse spheres. In their approach, the drag correlation models the complete
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stress tensor, while our equations require only the fluctuating part. However, this drag was determined for a statistically
homogeneous suspension at steady-state, and does not include the effect of the filtered pressure gradient. Assuming the con-
tribution of the averaged stress tensor is negligible in their simulations, the correlated drag coefficient is appropriate for the
equations presented in Section 2.3. The expression for the drag is given as
fdrag
i

mp
¼ 1

sp
ðfuf � upÞFðef ;RepÞ; ð44Þ
where the particle response time sp derived from Stokes flow is
sp ¼
qpd2

p

18lef
: ð45Þ
The dimensionless drag force coefficient is valid for a wide range of Reynolds numbers and solid packing, and is given by
Fðef ;RepÞ ¼
1þ 0:15Re0:687

p

e2
f

þ ef F1 ef
� �
þ ef F2 ef ;Rep

� �
; ð46Þ
where the particle Reynolds number is
Rep ¼
ef qf

fuf � up



 

dp

l : ð47Þ
The remaining two terms are given by
F1 ef
� �
¼

5:81 1� ef

� �
e3

f

þ
0:48 1� ef

� �1=3

e4
f

;

F2 ef ;Rep
� �

¼ 1� ef

� �3Rep 0:95þ
0:61 1� ef

� �3

e2
f

 !
:

In the context of wall-bounded particle-laden flows, the accuracy of the drag coefficient and particle volume fraction
diminishes at regions close to walls, where key assumptions that were used in the formulation of the models are often vio-
lated. For example, the definition of the volume filtered fluid quantity, Eq. (12), assumes that a is evaluated far from the near-
est fluid boundary, C. This allows for all surface integrals of the point property to be taken about the surface of the particle
while neglecting contributions due to the fluid boundary, namely
Z

C
n � agðjx� yjÞdy ¼ 0: ð48Þ
For regions of the fluid close to a wall, this assumption is no longer valid. Note that when considering a ¼ uf , this term van-
ishes due to the no-penetration condition. However, when dealing with the fluid stress tensor for example, this term must be
accounted for. A model for the fluctuating stress tensor is already given in the form of a drag force, so a drag model that ac-
counts for wall interactions directly would be convenient. In addition, the effective viscosity model defined in Eq. (41) is
dubious at walls. We assume that the particle volume fraction at the surface of the wall vanishes, since only a single point
of the particle surface can be in contact with the wall, and therefore we use the molecular viscosity for viscous fluxes at the
walls. Details on the numerical implementation of the wall interactions will be provided in Section 3.2.

With regards to particle rotation, the first term on the right-hand side of Eq. (7) is neglected, and rotation is attributed
only to the tangential component of the collision force, fcol

t;j!p, between particle p and all other particles j. It should be noted
that particle lift forces, such as Saffman lift and Magnus effect, are not accounted for and might play a significant role in di-
lute flows with wall interactions, such as clustering of particles in risers, but this assumption should be appropriate in dense
systems as shown herein. Note that the choice of closures proposed in this section is clearly not unique, and could be im-
proved significantly with a better understanding of the intricate microscale physics. With the advance of high performance
computing, there is an opportunity for fully-resolved particle DNS to provide data necessary to guide the development of
such improved models.

3. Interphase coupling

Coupling between the carrier fluid and dispersed phase appears in the form of the volume fraction ef , defined by Eq. (9),
and interphase exchange term Finter, defined by Eq. (28), as well as the source terms that arise during particle evaporation
and devolatilization, defined by Eqs. (18), (22), and (35). These terms are first computed at the location of each particle, using
information from the fluid, and are then transferred to the Eulerian grid. To interpolate the fluid variables to the particle loca-
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tion, a second order trilinear interpolation scheme is used. To extrapolate the particle data back to the Eulerian mesh, it is
necessary to perform a volume filtering operation that is consistent with the mathematical formulation. Classically, this fil-
tering operation takes the form of a linear extrapolation of the particle data to the nearest cells [5,55]. Salman and Soteriou
[35] and Garg et al. [56] reviewed typical interpolation schemes used to couple the two phases, and showed that such pro-
cedures lead to significant error that depends heavily on the ratio of the particle diameter to the grid spacing. With such
approaches, the size of the Eulerian mesh sets the filtering length scale. As discussed in Section 2.2, the characteristic filter
size should be larger than the particle, hence these approaches require for the mesh size to be much larger than the particle
diameter. This requirement can become problematic under certain circumstances. For example, polydisperse particle sys-
tems where some particles are very large can require excessively coarse meshes, while boundary layer flows or flows in
cylindrical geometries require locally finer meshes at the wall or at the pole, respectively, for which the Lagrangian approach
seemingly breaks down. However, note that mathematically there should be no intrinsic limitation on how fine a mesh can
be used for solving the fluid equations of motion (Eqs. (17) and (31)).

Transferring Lagrangian data to the Eulerian frame has already been defined within the derivation of the equations of mo-
tion (see Eqs. (10), (18), (22), (28), and (35)). Let bi be any property associated with particle i, its volume filtered value bbðx; tÞ
can be defined following Eq. (12) by
ep
bbðx; tÞ ¼ Z

VS

biðy; tÞgðjx� yjÞdy; ð49Þ
where VS ¼ V1 [ V2 [ � � � [ Vnp . Assuming bi to be constant for each particle, and since g varies little over the particle volume,
we can approximate bbðx; tÞ as
ep
bbðx; tÞ �Xnp

i¼1

bigðjx� xijÞV i: ð50Þ
Note that this definition is compatible with our derivation so far, in that the particle volume fraction is obtained by filtering
bi ¼ 1 for each particle, and Finter by filtering bi ¼ f inter

=V i. Clearly, any mesh restriction arises from the discrete implemen-
tation of our volume filter g. If the volume filter is implemented explicitly according to Eq. (50), then we expect to retain full
control of the particle diameter to mesh size ratio.

3.1. Filter discretization

Transferring the particle data to the Eulerian mesh requires discretizing the filtering kernel g, in order to solve Eq. (50).
The support of the filtering kernel determines the number of Eulerian cells that are influenced by the presence of each par-
ticle. For example, consider a filter that spans 10dp on a grid with cell spacing Dx ¼ 2dp. In three dimensions, the support of g
spans approximately a 5� 5� 5 cell volume, which would require looping over the 125 neighboring cells to compute the
volume filtered particle data. This is clearly overly expensive for a system with a large number of particles. To alleviate this
issue entirely, it is natural to introduce a two-step filtering process. First, the particle data is transferred on the Eulerian mesh
through a conservative mollification operation. This filter has a characteristic length scale that corresponds to the mesh size,
Dx. Then, the Eulerian field obtained from the first operation is diffused with an operator chosen to lead to the final filtered
length scale df , which should be much larger than the particle diameter. This methodology allows to use finer meshes while
still following the requirements associated with local volume filtering. Each step is detailed below.

3.1.1. Mollification
The particle data is first transferred on the Eulerian mesh using a mollification kernel gM, giving
epbMðx; tÞ �
Xnp

i¼1

bigM x� xij jð ÞV i; ð51Þ
where bMðx; tÞ is the initial particle data mollified onto the Eulerian grid. The mollification kernel is a function that decreases
monotonically with the distance from the particle, and is normalized such that it integrates to unity, given by
gMðrÞ ¼
1

r
ffiffiffiffiffiffiffi
2p
p e�

r2

2r2 ; ð52Þ
where r is the kernel width, taken as r ¼ Dx=2
ffiffiffiffiffiffiffiffiffiffiffiffi
2 ln 2
p

such that the full width at half the height of the kernel, d1=2, is equal to
the grid spacing, and therefore the effect of the particle is typically spread out over the 27 nearest cells. The normalization
ensures conservation of the particle data as it is transferred to the Eulerian mesh.

3.1.2. Diffusion
To deal with finer grids in a robust manner, a diffusion operation is implemented after the mollification step by solving
@a
@s ¼ Dr

2a; ð53Þ
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where D is a diffusion coefficient associated with the transfer of particle data to the underlying mesh. The initial condition
corresponds to a s ¼ 0ð Þ ¼ bM and the solution corresponds to a s ¼ sf

� �
¼ bbðx; tÞ, where bbðx; tÞ represents the particle data

after the convolution of the two filters has been applied. The quantity
ffiffiffiffiffiffiffiffi
Dsf

p
corresponds to a length scale for this diffusion

operation. An appropriate choice of value for this quantity should account for the mollification operation already accom-
plished, such that the application of the two operators produces a result independent of the underlying mesh size. Diffusion
of the Gaussian kernel gM with width Dx should give the full volume filtering kernel g with width df , which leads to
Fig. 1.
line).
Dsf ¼
max d2

f � Dx2;0
� �
16 ln 2

: ð54Þ
A value of df ¼ 3dp was found to yield appropriate smoothing for a monodisperse system while allowing for detailed capture
of mesocale flow features. For polydisperse systems with wide size distributions, we take df ¼max dp

� �
instead. Discretiza-

tion of the diffusion process, Eq. (53), can be handled in several ways. For cases with few particles, Eq. (53) is solved explicitly
using second order central differences. For systems with a large number of particles we solve Eq. (53) implicitly in a single
step to reduce computational cost. Fig. 1 shows the initial particle data transferred to the mesh with d1=2 ¼ Dx, as well as the
diffused kernel with d1=2 ¼ df .

Fig. 2 considers a single particle transferring its data in one dimension. Fig. 2a shows the mollification kernel gM as the
mesh is refined, Fig. 2b measures the error associated with the mollification operation compared to the exact solution given
by Eq. (50) with df ¼ 3dp. Because this operation is a function of the mesh size, convergence is not achieved during refine-
ment. Instead, the kernel approaches a Dirac distribution, potentially leading to volume fractions greater than unity, illus-
trating the fact that this operation requires the mesh size to be several times larger than the particle diameter. It is
shown that the mollification kernel converges towards the reference solution until Dx < df , at which case the kernel width
continues to narrow and the solution diverges. The full, two-step filtering operation is considered in Figs. 2c and 2d. As the
mesh is refined, Fig. 2c shows that the kernel converges towards a Gaussian of characteristic width df ¼ 3dp. Convergence is
shown in Fig. 2d for a mesh refinement from Dx ¼ 16dp to Dx ¼ dp=16. According to Eq. (54), for cell sizes larger than df no
diffusion is taking place and g rð Þ ¼ gM rð Þ. Therefore, convergence for Dx > df is based on the initial mollification. For cell
sizes smaller than df , the mollification kernel, gM rð Þ, continues to narrow and approach a Dirac function (as depicted in
Fig. 2a), the diffusion operation becomes active and allows to obtain second-order convergence.
3.2. Wall interactions

A conservative immersed-boundary (IB) method is employed to model realistic geometries without requiring a body-fit-
ted grid. The method is based on a cut-cell formulation that provides discrete conservation of mass and momentum [40,57].
To compute the area and volume fractions that are at the basis of this approach, it is necessary to fully characterize the loca-
tion of the immersed geometry surface. This is accomplished through the use of an implicit description in the form of an iso-
surface of a smooth function, referred to as a level set function, G, chosen such that it corresponds to a standard signed dis-
tance function, i.e.,
Gðx; tÞj j ¼ x� xCj j; ð55Þ
where xC corresponds to the closest point on the solid–fluid interface from x, and Gðx; tÞ > 0 on one side of the interface, and
Gðx; tÞ < 0 on the other side. With this definition, the immersed boundary surface C in a domain X is defined by
CðtÞ ¼ x 2 X : Gðx; tÞ ¼ 0f g.
Initial filtering kernel gM with a characteristic width d1=2 ¼ Dx (solid line), full volume filtering kernel g with a characterstic width d1=2 ¼ df (dashed



Fig. 2. Mollification and diffusion of a single particle in one-dimension under mesh refinement.
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The coupling of this cut-cell strategy with our particle-laden approach must be handled carefully, such that the particle
data being transferred to the underlying mesh is unaffected by the presence of small cut-cells at the walls. In particular, any
over-prediction of the fluid volume fraction in near-wall cells is likely to lead to an unphysical behavior with fast fluid layers
rising along the walls. During the mollification step, the Neumann boundary condition is enforced by introducing an image
particle. Particles close to a wall are mirrored across the boundary and their mollification kernel is superimposed with the
original kernel prior to normalization, given by
gM rð Þ ¼ gM rð Þ þ gM r � 2Gðxp; tÞ
� �

; ð56Þ
where Gðxp; tÞ is the distance from the particle to the closest IB surface. Fig. 3 shows the analytic mollification kernel as a
function of the scaled distance from the particle, along with the image kernel, and the full kernel with Neumann boundary.
The solid line represents the wall and the dashed line indicates the particle position.

Eqs. (50) and (51) are implemented in a finite volume formalism. The mollification step requires computing the mollifi-
cation kernel centered on particle p in cell i as
gi;p ¼
1
Vcell

i

Z
Vcell

i

gM x� xp
� �

dx; ð57Þ
where Vcell
i is the volume of cell i. This integral is approximated by splitting the cell volume into five tetrahedra, such that
Z
Vcell

i

gM x� xp
� �

dx �
X5

n¼1

gM xtet
i;n � xp

� �
Vtet

i;n ; ð58Þ



Fig. 3. Introduction of image particle to impose Neumann condition near walls. Wall (solid line), particle position (dashed line), initial kernel (circles),
imaged kernel (squares), superposition (crosses).

Fig. 4. Decomposition of a hexahedron cell into five tetrahedra and their corresponding barycenters (filled circles) for volume integration. Cells cut by the IB
are recomputed via marching tetrahedra algorithm.
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where xtet
i;n and Vtet

i;n represent respectively the barycenter and the volume of the nth tetrahedron. Fig. 4 illustrates a flow solver
cell divided into five tetrahedra with their corresponding barycenters. Tetrahedra that are cut by the IB surface are split into
sub-tetrahedra, using a marching tetrahedra algorithm [58], and the barycenter and volume of the cut tetrahedra are ad-
justed appropriately. This approach provides an accurate sub-cell integration methodology that accounts fully for the im-
mersed boundary.
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4. Collision model

4.1. Normal collision

Particle–particle and particle–wall collisions are modeled using a soft-sphere approach originally proposed by Cundall
and Strack [36]. The particles are represented as a mass-spring-dashpot system, as shown in Fig. 5. When two particles come
into contact, a repulsive force fcol

n is created as
fcol
n;b!a ¼

�kdabnab � guab;n if dab < ra þ rb þ kð Þ;
0 else:

�
ð59Þ
For the collision shown in Fig. 5, ra and rb are the radii of particles a and b, respectively, dab is the distance between the cen-
ters of the particles, dab is the overlap between the particles, and nab is the unit normal vector from particle a to particle b. The
normal relative velocity between particles a and b is given by
uab;n ¼ ua � ubð Þ � nabð Þnab: ð60Þ
k is the force range, which will be discussed in Section 4.4, and k and g are the spring stiffness and the damping parameter,
respectively. A model for the damping parameter uses a coefficient of restitution 0 < e < 1 and an effective mass
mab ¼ 1=ma þ 1=mbð Þ�1 such that
g ¼ �2 ln e

ffiffiffiffiffiffiffiffiffiffiffi
mabk

p
p2 þ ln eð Þ2

: ð61Þ
Collisions with walls are handled by treating the walls as particles with infinite mass and zero radius.

4.2. Inter-particle friction

To account for friction between particles and thus particle rotation, a tangential collision model presented by van der Hoef
et al. [6] is used. When particle a comes in contact with particle b, the tangential force is described as
fcol
t;b!a ¼

�ktdt � gtuab;t if fcol
t;b!a




 


 6 lf fcol
n;b!a




 


;
�lf fcol

n;b!a




 


tab if fcol
t;b!a




 


 > lf fcol
n;b!a




 


;
8><>: ð62Þ
where kt ; dt ;gt , and lf are the tangential spring stiffness, tangential displacement, tangential damping coefficient, and fric-
tion coefficient, respectively. The relative tangential velocity, uab;t , is defined as
uab;t ¼ uab � uab;n; ð63Þ
Fig. 5. Soft-sphere representation of two particles undergoing collision.
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and is used to create a tangential unit vector tab as
tab ¼
uab;t

uab;t



 

 : ð64Þ
In two dimensions, the tangential displacement is defined as
dt ¼ dt0 þ
Z t

t0

uab;t dt; ð65Þ
where t0 is the initial time of the collision. Computing Eq. (65) can become computationally intensive for particle flows under
sustained contact. For instance, in two dimensions with a polydisperse particle system, tens of simultaneous collisions are
common, and in three dimensions, hundreds of simultaneous collisions may be possible for a single particle provided the
particle size distribution is wide enough. In order to deal with tangential collisions properly, the tangential displacement,
dt , needs to be stored for every collision and every particle at each timestep. For systems with tens of thousands of particles
or more, this method becomes very computationally expensive. However, the static friction model
fcol
t;b!a ¼ �lf fcol

n;b!a




 


tab ð66Þ
that simply multiplies the normal component of the collision force by the coefficient of friction does not require storing any
additional information. Moreover, this model is valid for sustained contact, which should dominate for dense particle sys-
tems. This simplified model was tested against the full linear model, Eq. (62), as well as experiments described in Di Renzo
and Di Maio’s review [59]. The test configuration consists of a single particle colliding with a flat surface, as illustrated in
Fig. 6. Collision parameters are are given in Table 1, chosen to reflect the simulations performed in Di Renzo and Di Maio [59].

Fig. 7a shows the rebound angle a2, versus impact angle a1. The second plot, Fig. 7b, shows the final rotational velocity x2,
versus a1. The third plot, Fig. 7c, shows the tangential coefficient of restitution et ¼ ju1;t j=ju2;t j, versus a1, where u1;t and u2;t

are the tangential velocities before and after the collision, respectively. At smaller contact angles the friction model over-pre-
dicts the tangential force, though overall this approach appears to be a good compromise between accuracy and cost.

Once each individual collision force is computed, the full collision force that particle p experiences can be expressed as a
sum of collisions with all other particles j undergoing collision with p, i.e.,
Fcol
p ¼

X
j

fcol
n;j!p þ fcol

t;j!p

� �
: ð67Þ
4.3. Stability criteria

When simulating dense particle-laden flows, particle processes often limit the simulation timestep. The particle Courant-
Friedrichs-Lewy (CFL) number, given by
CFLp ¼
Dtpjupj

dp
; ð68Þ
Fig. 6. Particle collision test. Angular velocity xp , impact angle a, impact velocity up , normal velocity uab;n , tangential velocity uab;t .

Table 1
Particle collision parameters for rebound test case.

Diameter, dp 5 mm

Density, qp 4000 kg/m3

Normal spring constant, k 1:72� 107 N m�1

Tangential spring constant, k 1:48� 107 N m�1

Coefficient of restitution, e 1.0 –
Friction coefficient, lf 9:2� 10�2 –

Initial velocity, u1 3:9 m s�1

Timestep, Dt 1� 10�8 s



Fig. 7. Validation of the simplified tangential collision model (solid line) against full linear model [59] (dashed line) and experimental results [59] (filled
circles).
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characterizes the fraction of its diameter the particle moves during the particle timestep, Dtp. If the particle response time sp

is less than the simulation timestep Dt, the particle solver iterates with a timestep Dtp < sp for a total time Dt. The timestep
for integrating the particle motion is chosen such that maxp¼1::np CFL 6 0:1, thereby limiting the inter-particle overlap during
collisions.

To avoid excessive overlap which can lead to unphysical solid packing in a bed at rest, the particle stiffness should com-
pensate for the weight of particles above it, leading to the following criterion on the spring constant
k� Hb
mpg

d2
p

; ð69Þ
where Hb is the height of the bed. Finally, the spring constant is related to the collision time scol according to
k ¼ mab=s2
col p2 þ ln eð Þ2
� �

: ð70Þ
To ensure proper resolution of collisions, Dt is chosen such that scol P 15Dt.

4.4. Random close-packing limit

As mentioned in Section 4.1, a radius of influence k is introduced to create a collision force when two particles are close,
but not yet in contact. The collision model proposed by Patankar (2001) [5] suggests using k ¼ 0:075dp when calculating par-
ticle overlap. With a finite, non-zero radius of influence, particles at rest never come in contact, and therefore a settled bed
under random close-packed conditions will exhibit an artificially large fluid volume fraction. Theory and experiments have
shown that a bed of monodisperse spheres at rest will reach a random close-packed limit of 0.634 [60]. Several three-dimen-
sional simulations were conducted to see the effect of k on the solid packing for a static bed. The domain is periodic in the
span-wise directions and consists of approximately 100,000 monodisperse spheres, shown in Fig. 8a. The particles have a
diameter and density of 200 lm and 3300 kg/m3, respectively. A uniform mesh of Dx ¼ 2dp with 24 cells in the spanwise
directions and 50 cells in the height was used for this test. Fig. 8b shows that the random close-packing limit is recovered
when k approaches 0, as expected.

Following this observation, we modify the expression of the radius of influence, making it depend on the relative collision
velocity. To this end, a particle collision CFL number is introduced as
CFLcol
ab ¼

juab;njDt
deff

; ð71Þ
where juab;nj is the magnitude of the normal relative velocity between particles a and b during a collision, and deff is the effec-
tive particle diameter (deff ¼ dp for wall collisions and deff ¼ ra þ rb for particle–particle collisions). The timestep for integrat-
ing the particle motion is chosen such that particles do not move more than 10% of their diameter per timestep, and
therefore, the largest value CFLcol

ab will typically be 0.1 for particle–wall collisions, and 0.2 for particle–particle collisions.
The radius of influence can then be expressed as
kwall ¼ 0:75CFLcol
ab deff ; ð72Þ
kparticle ¼ 0:375CFLcol
ab deff ; ð73Þ
such that it decreases monotonically as the normal collisional velocity decreases, reaching zero when the particles are immo-
bile with respect to one another. This strategy allows to recover the correct random close-packing limit in near motionless
regions of the bed, while providing a robust collision model for high-speed collisions.



Fig. 8. Testing the effective solid packing in a bed at rest.

Fig. 9. Utilization of the Eulerian mesh during computation of particle collisions.
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4.5. Numerical implementation

The computation of the collision force requires measuring inter-particle distances, which leads to an Oðn2
pÞ problem if

implemented using a brute-force strategy. Instead, we make use of the underlying computational mesh in order to speed
up the identification of likely collision partners, as illustrated in Fig. 9a. For each particle p, we identify the computational
cell ip; jp; kp

� �
to which particle p belongs. For this cell and its closest 26 neighbors, we loop over all particles j in that cell,

and test whether p and j are undergoing collision. The computational cells are typically large enough to ensure all collisions
are captured using this approach. Note that it is also possible to construct a separate grid proportional to the particle diam-
eter for the computation of particle collisions, which might be useful for particles with a wide size distribution, or non-uni-
form meshes, leading to grid spacing smaller than the particle diameter.
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The scheme also relies on ghost particles in order to facilitate the parallel implementation of the collision force calcula-
tion. These ghost particles correspond to particles located inside interprocessor ghost cells, and they are communicated be-
tween processors like any Eulerian variable, as illustrated in Fig. 9b. Each processor contains its own particles as well as the
particles in the nearest layer of cells of the processor immediately neighboring it.

5. Numerical implementation and performance

The CFD code NGA [41], a high-order, fully conservative solver tailored for turbulent flow computation, solves the fluid
equations on an Eulerian mesh while the particles are tracked individually in a Lagrangian framework. All simulations pre-
sented in this paper are performed using second order spatial accuracy for both convective and viscous terms in the Navier–
Stokes equations. Time advancement is accomplished using the second order accurate semi-implicit Crank-Nicolson scheme
of Pierce and Moin [61]. Based on a fractional step approach [62], this algorithm uses both temporal and spatial staggering
between velocity, pressure, and density. The volume fraction ef is stored at cell centers, like the density. The details on the
mass, momentum, and energy conserving finite difference scheme are available in [41].

Before each new flow solver timestep, the particle equations are solved using the fluid velocity obtained from an Adams–
Bashforth prediction. The initial predictor step is second order accurate, resulting in second order temporal accuracy of the
coupling between particles and gas phase [63]. The particle equations consist of a set of nine coupled ordinary differential
equations per particle that are solved using a second-order Runge–Kutta scheme. Sub-stepping is used to ensure stability
when the particle response time (defined in Eq. (45)) becomes smaller than the simulation timestep. For low Stokes number
cases, this can become computationally expensive as many iterations might be necessary to maintain stability. An implicit
solver such as DVODE [64] can be implemented to avoid this issue and reduce computational time.

Particles are distributed among processors based on the underlying domain decomposition of the fluid phase. After each
timestep, the particles undergo an interprocessor communication step as they move from one processor sub-domain to an-
other, as illustrated in Fig. 10. NGA relies on interprocessor ghost cells in order to facilitate this data exchange. Particles
owned by processor 1 that are located within its ghost cells at the end of the timestep are sent to the appropriate neighbor-
ing processors before being removed from the memory of processor 1. In this work, the numerical methods have been imple-
mented in parallel using message passing interface (MPI), and detail on the solution procedure as well as parallel
performance of the scheme will be provided in the following sections.

5.1. Solution procedure

This section summarizes the solution procedure used in our code, then discusses the relative cost of individual routines.

1. Pre-timestep fluid velocity solver
Fig. 10.
sending
	 Adam-Bashforth prediction of the fluid velocity at the middle of the particle timestep
Procedure to handle interprocessor particle exchange. Particles belonging to processor 1 (gray circles), particles removed from processor 1 after
(empty circles), particles received by neighboring processors (filled circles). Dashed lines indicate ghost cell boundaries.
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2. Localize particles on mesh

	 Find i; j; k of cell in which the center of the particle lies
	 Communicate particles with neighboring processors
3. Compute collision force for each particle

	 Loop through the 27 nearest cells and identify neighboring particles
	 Calculate distance dab between particle a and nearest wall (‘‘b’’)
	 Calculate distance dab between particle a and each neighboring particle b
	 If dab < 0:075deff , compute k (Eqs. (72) and (73))

– If dab < k

⁄ Solve normal collision force (Eq. (59))
⁄ Solve tangential collision force (Eq. (66))
4. Advance particles

	 Determine particle timestep size such that Dtp < sp (Eq. (45))
	 Subiterate for a total time Dt

– Interpolate the fluid-phase variables (r � s; ef ; uf ; qf ; l) to the particle position
– Compute forces acting on the particle (Eq. (5))
– Update position, velocity, and angular velocity with second-order Runge–Kutta

5. Compute interphase exchange term from particles

	 Calculate momentum exchange term (Eqs. (42) and (44))
	 Exchange source term with fluid phase via mollification (Eqs. (51) and (52))
	 Filter momentum exchange term (Eq. (53))
6. Compute volume fraction from particles

	 Mollify particle volume to the Eulerian grid (Eqs. (51) and (52))
	 Divide by local cell volume
	 Filter volume fraction (Eq. (53))
7. Communicate particles with neighboring processors
8. Advance fluid velocity

	 Multiply fluid density by volume fraction
	 Compute effective viscosity (Eq. (41))
	 Update velocity using Crank-Nicolson scheme
9. Advance the timestep, t ¼ t þ Dt.
10. Repeat if t < tfinal

To assess the timing of each component of the algorithm, a three-dimensional, twice periodic bed of 15.6 million particles
was simulated using 20 million grid cells on 720 cores. To avoid any load imbalances, the processors were decomposed in the
two span-wise directions only, resulting in approximately 22,000 particles per processor. Timing for the most expensive rou-
tines is given in Fig. 11, which shows the fraction of time spent in the LPT routine that is outlined in the algorithm above.
While each timestep took approximately 6 s, it was found that the collision process (step 3) dominates the cost at approx-
imately 72% of the total time. while the particle advancement routine (step 4) and interprocessor communication were
found to take approximately 17% and 2% of the total time, respectively. It should be noted that the relative cost of interpro-
cessor communications increases significantly when considering fewer particles per processor.

5.2. Parallel performance

A scaling analysis was performed on Red Mesa, the National Renewable Energy Laboratory’s (NREL) high performance
computing system. The system consists of 15,360 cores with a peak performance of 180 TFlops. A series of simulations were
run to test the parallel performance of NGA using a reference simulation of 134 million cells and 382 million particles on
4096 cores. The number of cores is progressively reduced to obtain the speed-up data, while the scale-up data is obtained
by proportionally reducing the domain size and number of cores in the vertical direction while keeping the relative bed
height constant at half the reactor length. Fig. 12 shows strong and weak scaling results. Scale-up is computed as
Scale� up ¼ Nref
core

nxnynz

tstep

� �
nref

x nref
y nref

z

tref
step

 !�1

; ð74Þ
where Ncore is the number of cores, tstep is the time per timestep, ni represents the number of cells in the ith direction, and the
‘‘ref’’ quantities corresponds to the reference simulation. Similarly, speed-up is defined as
Speed� up ¼ Nref
core

tstep

tref
step

: ð75Þ



0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

Fig. 11. Timing of specific particle tracking routines, normalized by the total time per timestep. Simulation contains 15.6 million particles, performed using
720 cores: collision scheme (circles), particle advancement (diamonds), interprocessor communication (squares).
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Fig. 12. Scaling analyses of NGA on Red Mesa. Dashed line indicate linear scaling.
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The cost of the particle tracking scheme was found to remain roughly constant throughout the simulations. It was found that
the particle tracking routines accounted for 83% of the total simulation cost, while the pressure and velocity solver accounted
for 14% and 2.4%, respectively. Scaling results are very good up to 4,096 cores, the maximum number used in this test, with
increased efficiency for higher loading of cells and particles per processor.

6. Numerical tests

A range of laboratory scale simulations were conducted in order to validate the methods discussed in this paper. The sec-
tion begins with an analysis of the force balance at the onset of fluidization. Highly turbulent spout fluidization and bidi-
spersed segregation are then considered in a pseudo two-dimensional reactor, and results are compared against
experiments. Finally, a two-inch bubbling fluidized bed is presented, and mean statistics on the flow dynamics and bubble
characteristics are discussed.

6.1. Onset of fluidization

The phenomenon of fluidization occurs when a fluid passes through a bed of granular material, causing a pressure drop
that can support the weight of the bed, allowing the granular material to behave like a fluid. The critical value at which the
superficial gas velocity, defined as ef uf if we assume the x-direction to be vertical, first begins to fluidize the material, is
known as the minimum fluidization velocity Umf . Superficial velocities exceeding Umf may lead to rapid particle motion caus-
ing bubbling or clustering, allowing for efficient mixing to take place. A study of the onset of fluidization was conducted in
order to assess the capability of the proposed strategy to reproduce theory [13]. We consider the periodic bed of particles
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used in Section 4.4 and shown in Fig. 8a, and introduce an inlet velocity at the bottom which is increased until fluidization is
reached. The simulation parameters for the study can be found in Table 2.

Prior to fluidization, the pressure drop across the bed balances drag, which can be shown by neglecting friction at the
walls and the effect of gravity on the fluid, reducing the momentum balance given by Eq. (31) in the vertical direction to
�ef
@p
@x
¼ f drag: ð76Þ
The minimum fluidization velocity is reached when the pressure drop can support the weight of the bed [13], given by
� @p
@x
¼ ef qf þ epqp

� �
g � epqpg: ð77Þ
Fig. 13a shows the pressure gradient normalized by the weight of the bed per unit volume acting in the vertical direction
plotted against the analytic expressions given by Eqs. (76) and (77). Eqs. (76) and (77) were solved using the volume fraction
at minimum fluidization. As the superficial gas velocity increases, the pressure drop across the bed increases near-linearly
until minimum fluidization has been reached, at approximately 0.03 m/s.

As the inlet velocity approaches Umf , the forces acting on the particles evolve as well. The relative importance of each
component in the particle equation of motion was computed by summing the individual forces acting on each particle over
the total number of particles, and is given in Fig. 13b. When the bed is at rest, the collision force exactly balances the weight
of the bed. The pressure drop and drag increase with the superficial gas velocity until the particles are no longer in contact
and fluidization is reached.

The measured pressure drop in Fig. 13a verifies the code’s ability to reach minimum fluidization for the given drag model
as predicted by theory. Figs. 13a and 13b illustrate the mechanisms that control the multiphase dynamics in fluidized beds,
which will be responsible for the phenomenon observed in the subsequent test cases.

6.2. Pseudo two-dimensional spout fluidization

Numerical simulations of a pseudo two-dimensional spout fluidized bed under two different inflow conditions were con-
ducted and compared to experiments by Link et al. [65,66]. The depth of the bed is large enough to prevent bridge formation
between particles, though not too large such that digital-image-analysis is capable of measuring voidage. A schematic of the
bed as well as its dimensions can be seen in Fig. 14. Except for the height of the reactor, which is reduced to limit the com-
putational expense, all physical parameters used in the simulations match those of the experiments. Simulation parameters
for each case can be found in Table 3. A grid size equal to the particle diameter was chosen in order to capture the unsteady
nature of the gas phase. Air is injected via three separate sections at the inlet. A high-speed spout velocity is fed through the
center orifice while the outside sections feed the background velocity.

For both cases, relatively high gas velocities are introduced, resulting in particle Reynolds numbers above 300, and gas
Reynolds numbers through the spout above 13,000. At such large Reynolds numbers, sub-grid Reynolds stresses are likely
to be significant and need to be closed. For both cases A and B, we close Ru with a dynamic Smagorinsky model [48,49] based
on Lagrangian averaging [50]. Note that we do not account for turbulence modulation by the particles, even though it might
be important. Two viscosity models are therefore used simultaneously: an eddy viscosity model to account for turbulence,
and an effective viscosity model based on experimental correlations to account for the enhancement in viscous stresses in
packed regions of the bed. Interactions between these models are unclear. However, Fig. 15 reveals a distinct segregation
between the models. The effective viscosity dominates in regions with greatest solid packing, while the turbulent viscosity
model dominates in the particle-free turbulent regions.

As depicted in Fig. 15, the spout velocity in case A leads to a region of fast moving particles in the middle of the bed with a
recirculation region at the top. When the background fluidization velocity is increased, the spout has a greater impact on the
Table 2
Simulation parameters for the minimum fluidization test.

Height 20 mm

Width 9.6 mm
Depth 9.6 mm
Cells in x-direction, nx 50 –
Cells in y-direction, ny 24 –
Cells in z-direction, nz 24 –
Timestep, Dt 5 ls
Filter width, df 700 lm
Number of particles, np 101,568 –
Particle diameter, dp 200 lm
Particle density, qp 2600 kg/m3

Coefficient of restitution, e 0.8 –
Coefficient of friction, lf 0.1 –



Fig. 13. Balance of forces during onset of minimum fluidization.
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overall flow pattern. In case B the jet oscillates back and forth due to the production of gas bubbles alongside the spout, as is
observed in both experiment and simulation. Fig. 16 shows qualitative agreement between the experiment and simulation
for Case B.

Link et al. [65,66] used particle image velocimetry (PIV) to study the particle flow and obtained time-averaged vertical
particle flux profiles, Up;x, at a height of 0.13 m for each case. A comparison of the particle flux profiles is presented in
Fig. 17. Although the results fail to match the data at the region near the wall, overall very good agreement is shown in both
cases. It should be noted that simulations by Link et al. [66] show discrepancies in Up;x at the duct center and regions near the
wall. It has already been discussed in Section 2.5 that several challenges exist when modeling regions near the walls. In par-
ticular, key assumptions in the mathematical derivation are violated close to solid boundaries, and a drag model that is
aware of walls could alleviate this. Furthermore, a proper prediction of the volume fraction within a particle diameter away
from the wall is very difficult to obtain. A Neumann boundary condition on this quantity is used for robustness, though a
detailed sub-grid model might be necessary to capture the proper physics.



Fig. 14. Schematic of spout-fluid bed (not to scale), with dimensions in mm [65].

Table 3
Simulation parameters for the spout fluidization cases.

Height 0.75 m

Width 0.15 m
Depth 0.015 m
Cells in x-direction, nx 300 –
Cells in y-direction, ny 30 –
Cells in z-direction, nz 3 –
Timestep, Dt 5 ls
Filter width, df 7.5 mm
Number of particles, np 24,500 –
Particle diameter, dp 2.5 mm
Particle density, qp 2526 kg/m3

Spring constant, k 4,538 kg/s2

Coefficient of restitution, e 0.9 –
Coefficient of friction, lf 0.1 –
Case A B
Background velocity 1.5 m/s 3.0 m/s
Spout velocity 30 m/s 20 m/s
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6.3. Segregation dynamics

Segregation in a bidisperse fluidized bed was studied and compared to experiments performed by Goldschmidt et al. [67].
A bed of small and large glass beads was fluidized and the time evolution of both axial and lateral segregation was calculated.



Fig. 15. Instantaneous snapshot of case A of the spout fluidization simulation and corresponding sub-grid viscosity models.

Fig. 16. Instantaneous particle location showing flapping motion from experiment [65] (left) and simulation (right) for Case B.
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In gas–solid fluidized beds, segregation occurs at fluidization velocities close to minimum fluidization. Smaller particles tend
to be more dynamic and migrate to the top of the bed. The experiments were conducted in a pseudo two-dimensional duct as
shown in Fig. 14. Glass particles with diameters of 1.5 and 2.5 mm were fluidized with air at a fluidization velocity of



Fig. 17. Time-averaged particle flux profiles at a height of 0.13 m for two different cases. Simulations (solid lines), experiment [66] (circles).
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uin ¼ 1:3 m/s, corresponding to 0:78Umf and 1:25Umf , respectively. The bed consists of a mass fraction of small particles
vsmall ¼ 0:25. Simulation parameters are given in Table 4.

The degree of segregation s is defined as
s ¼ S� 1
Smax � 1

; ð78Þ
where S ¼ hsmall=hlarge; Smax ¼ 2�vsmall
1�vsmall

. The measure s is referred to as the percentage of axial segregation, which equals 0 for a

perfectly mixed bed, and 1 when the mixture is completely segregated. hsmall and hlarge refer to the mean height of the small

and large particles, respectively. The mean height of the small particles is given by hsmall ¼
PNp;small

i¼1
xi;small

Np;small
, where xi;small is the x-

position of the ith small particle, and Np;small is the number of small particles. hlarge is defined in a similar way for large par-
ticles. When calculating lateral segregation, hsmall and hlarge are taken to be the average y-distances from the center of the bed.

Initially, the bed is at rest and uniformly mixed. At t ¼ 0 a uniform inflow is introduced at the bottom of the bed. The
simulation runs for 60 s, and segregation rates are compared with experimental data. Originally, walls were present in all
directions and the bed was found to remain at rest with the given inflow velocity. With three cells across the depth of
the bed, a proper boundary layer could not be established with the imposed no-slip boundary condition, which led to a mis-
match in effective Umf , preventing fluidization to occur with the experimental parameters. This was alleviated by removing
the walls in the z-direction, allowing the bed to fluidize with the given inflow. Although wall effects may be significant, no
significant motion was observed with the particles normal to the z plane. Fig. 18 shows instantaneous snapshots of particle
position during the simulation. The segregation rate is plotted in Fig. 19, which shows good agreement with the experiments,
although the segregation rate seems to taper off in the simulation while the experiment data shows a continuous rise. The
lack of walls in the z-directions might explain this discrepancy. Note that at such low fluidization velocities, the solution be-
comes very sensitive to the drag model, which does not account for walls appropriately.
Table 4
Simulation parameters for the bidisperse fluidized bed.

Height 0.45 m

Width 0.15 m
Depth 0.015 m
Cells in x-direction, nx 90 –
Cells in y-direction, ny 30 –
Cells in z-direction, nz 3 –
Timestep, Dt 1e�4 s
Inlet superficial velocity, uin 1.3 m/s
Filter width, df 7.5 mm
Particles Large Small
Number, np 17940 – 27720 –
Diameter, dp 2.5 mm 1.5 mm
Particle density qp 2525 kg/m3 2525 kg/m3

Minimum fluidization velocity, Umf 0.78 m/s2 1.25 m/s2

Spring constant, k 45.3 kg/s2 9.8 kg/s2

Coefficient of restitution, e 0.9 – 0.9 –
Coefficient of friction, lf 0.1 – 0.1 –



Fig. 18. Segregation of a bidisperse fluidized bed. Large and small particles are shaded dark and light, respectively.

Fig. 19. Axial segregation rate (left) and lateral segregation rate (right) predicted numerically (solid line) compared to experiments [67] (symbols).
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6.4. Lab-scale fluidized bed reactor

NREL is using a 4-inch fluidized bed reactor to study gasification of biomass [68]. The reactor, shown in Fig. 20a, consists
of a freeboard to prevent the particles from escaping the top, a downward-angled feed tube to load the biomass particles, an
exit valve to prevent pressure buildup, pressure taps at different intervals along the side of the reactor, and a distributor plate
at the bottom. A simulation was conducted as if all the ports were closed off, considering only a cylindrical boundary with a
freeboard, as shown in Fig. 20b. The geometry was taken to be half the scale of the physical reactor, including 15.6 million
particles and approximately 20 million grid cells. Fluid properties were taken to be those of nitrogen at room temperature.
The simulation was performed using 576 cores for three weeks in order to obtain flow statistics. Simulation parameters are
given in Table 5.

In order to fluidize the bed material while preventing back flow, gas is forced through a distributor plate pierced with
numerous small holes. Franka and Heindel [69] have shown that the superficial gas velocity affects the region directly above
the distributor plate, leading to regions of high gas volume fraction extending from the distributor plate into the bed. Jets are
created by a high local gas velocity passing through each hole, potentially leading to non-uniform fluidization. This non-uni-
form flow pattern affects the bubble characteristics within the bed [69], and has therefore been introduced in the simulation.
The gas jets are modeled as Gaussian functions with a characteristic width Djet , distributed along a Cartesian grid, shown in
Fig. 20c. The inflow is given by
Xnjet

j¼1

e
�

ðy�yj Þ
2

0:5D2
jet

þ
ðz�zj Þ

2

0:5D2
jet

� �
; ð79Þ
where the jth jet is centered at xin; yj; zj
� �

; xin is the location of the inlet, and njet is the number of jets. The inflow is then re-
scaled to match the superficial gas velocity.

The particle size distribution is created from a random log-normal distribution generator. Given a mean diameter hdpi and
a standard deviation rd, the standard deviation and mean for a log-normal random variable are
rd;log ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnð1þ ðrd=hdpiÞ2Þ

q
; ð80Þ



Fig. 20. Experimental and computational configuration of a lab-scale fluidized bed reactor.

Table 5
Simulation parameters for lab-scale fluidized bed reactor.

Domain length in x m 0.4

Domain length in y m 0.079
Domain length in z m 0.079
Cells in x-direction, nx 800 –
Cells in y-direction, ny 158 –
Cells in z-direction, nz 158 –
Bed diameter, Dbed m 0.051
Initial bed height, H0 m 0.106
Gas density, qf kg/m3 1.13
Gas viscosity, l kg/m s 1:77� 10�5

Particle density, qp kg/m3 3300
Inlet superficial velocity, uin m/s 0.494
Orifice diameter, Djet m 0.002
Number of holes, njet – 32
Number of particles, np – 15.6 million
Mean particle diameter, hdpi lm 200
Min particle diameter, dmin lm 102
Max particle diameter, dmax lm 410
Particle standard deviation, rd lm 70
Spring constant, k 3.0 kg/s2

Coefficient of restitution, e 0.8 –
Coefficient of friction, lf 0.092 –
Filter width, df lm 820 (2dmax)
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and
hdpilog ¼ lnðhdpiÞ � r2
d;log=2; ð81Þ
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respectively. Using these parameters for the mean and standard deviation of a random normal distribution then exponen-
tiating this value yields the appropriate particle diameter. A log-normal distribution was created to match the particle size
data provided by NREL, as illustrated in Fig. 21.

Fig. 22 shows a volumetric rendering of the gas velocity and an iso-surface of ef ¼ 0:92 at a simulation time of 1.5 s. The
gas jets at the inlet directly lead to the formation of bubbles, which expand and accelerate as they rise until they reach the
surface of the bed. The bubbles tend to form in the middle of the bed, leading to a recirculation of particles down the sides of
the walls. It is apparent in the figure that the gas velocity is greatest within the bubbles. Instantaneous plots of fluid volume
fraction and velocity are presented in Fig. 23a and c, further exemplifying this correlation. Above the bed, the freeboard is
seen to induce turbulence in the gas phase, as illustrated in Fig. 23c.

The simulation was run until statistical stationarity was reached. Time-averaged fields of the gas phase volume fraction
and velocity are given in Fig. 23b and d, respectively. The highest particle packing is observed at the walls, indicating the
tendency for bubbles to form in the middle of the bed. The mean gas velocity is negative in this region as a result of entrain-
ment from the particles. Radial profiles of particle velocities at various heights in the bed are given in Fig. 24a, which clearly
identifies recirculation at the walls due to rising bubbles. The presence of the bubbles lead to periodic oscillations in the bed
height, as depicted in Fig. 24b. The bed height is based on the 90th-percentile of particle height, and indicates convergence in
macroscale motions of the bed.

Pepiot and Desjardins [33] showed that large variations of residence times are directly related to the local gas volume
fraction, and thus bubbling has the potential to affect the chemical processes in reactive beds. In order to develop more in-
Fig. 21. Particle size distribution. Data provided by NREL (circles), simulation data (solid line).

Fig. 22. Simulation of a two-inch fluidized bed reactor at t = 1.5 s.



Fig. 23. Instantaneous and time-averaged statistics of the two-inch fluidized bed reactor.

Fig. 24. Particle statistics of the two-inch fluidized bed reactor.
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sight on the role of bubbles in fluidized bed dynamics, the band growth algorithm of Herrmann et al. [70] was implemented
to identify and track individual bubbles. For details on the bubble tracking scheme, see Pepiot and Desjardins [33]. With this
tool, the volume of each identified structure is calculated and an effective diameter is computed by assuming a perfect
sphere. The mean bubble diameter was found to be 18% of the bed diameter, and on average 8 bubbles existed within
the bed at any time. Bubbles tend to form at the bottom of the bed and grow in size and velocity as they rise. The bubble
height was compared with Darton’s correlation [71] in Fig. 25, which gives the bubble diameter as a function of height by
Db ¼ 0:54 Uin � Umf
� �0:4 hþ 4

ffiffiffiffiffi
A0

p� �0:8
g�0:2; ð82Þ



Fig. 25. Bubble height as a function of diameter compared to Darton’s correlation [71]. Correlation corresponding to uin ¼ 6Umf (dashed-line), correlation
corresponding to uin ¼ 11Umf (solid line).

J. Capecelatro, O. Desjardins / Journal of Computational Physics 238 (2013) 1–31 29
where A0 is the catchment area of the distributor plate (area of the plate per orifice). For this case, A0 ¼ pD2
jet=4. Due to the

non-linearity of the drag, Umf cannot be determined a priori, as this would require knowledge of the voidage at fluidization.
However, this value of the volume fraction can be postulated, allowing us to compare the correlation with the simulation
results. Typically, the voidage at minimum fluidization, emf , is taken to be that of a packed bed of uniform spheres in cubic
arrangement [13], giving emf ¼ 1� p=6. Using this value, uin corresponds to 6Umf . However, when calculating Umf for exper-
imental runs, NREL uses a value of emf ¼ 0:405 to account for polydisperisty, corresponding to 11Umf . It is shown in the figure
that the value of Umf does not change the correlation substantially, and it is assumed the simulation fluidization velocity falls
between these two values. Due to the highly turbulent nature of the flow, bubble coalescence and breakup lead to numerous
small diameter bubbles throughout the bed. With this large number of small bubbles throughout the bed, smaller bubbles
are found to deviate from the correlation, although overall we see good agreement between the simulation data and
correlation.
7. Conclusions

A numerical strategy for simulating gas–solid particle-laden flows in an Eulerian–Lagrangian framework was developed
and tested. Starting from the point wise equations of motion that govern each phase, a volume filtered description initially
introduced by Anderson and Jackson [42] was presented then extended for chemically reacting flows. All assumptions and
models were stated explicitly and discussed. A two-step filtering process was derived in the context of the volume filtering
approach that converges under mesh refinement and allows for cell sizes smaller than the particle diameter if necessary. A
conservative immersed boundary method was used for modeling complex geometries. Due to the inherent nature of this
approach, detailed information of the particle’s distance to the nearest boundary was readily available. Particles near walls
were mirrored across the boundary to yield appropriate boundary conditions. A soft-sphere collision model was employed,
which was modified for parallel efficiency. Replacing the full linear model for tangential collisions with the static friction
model was shown to be a good compromise for cost, as the simpler model does not require storing the collision history.
A radius of influence proportional to the relative collisional velocity was used to allow for robust collisions while recovering
random close packing for a bed at rest.

Several lab-scale simulations of experiments were conducted for validation purposes. Choosing appropriate values for the
simulation timestep that account for both the particle CFL as well as particle stiffness is necessary to prevent excessive over-
lap leading to unphysical packing while correctly capturing particle collisions. Particle flows close to the minimum fluidiza-
tion velocity as well as highly turbulent flows were simulated and provided overall good agreement with experiments. For
systems with large gas phase Reynolds numbers, a dynamic Smagorinsky eddy viscosity model was used to close the residual
stress tensor Ru. Although interactions between the viscosity models are unclear, a distinct segregation was observed where
the effective viscosity dominates in regions with greatest solid packing, while the turbulent viscosity model dominates in the
particle-free turbulent regions. Finally, a two-inch fluidized bed reactor was simulated, consisting of 15.6 million particles on
approximately 20 million grid cells. Mean statistics of the flow were computed and a band-growth algorithm was used to
study bubbling in the bed. Gas jets form at the distributor plate that lead to bubbles that grow in size as they approach
the surface of the bed, displaying good agreement with experimental correlations.

It was shown that several challenges exist for properly treating regions near walls. When deriving the volume filtered
equations, underlying assumptions are violated when the filter radius is larger than the distance between particles and solid
boundaries. Drag models for spherical particles that account for wall interactions are necessary for proper closure. An accu-
rate computation of the volume fraction near walls that accounts for the distribution of distances between particle surfaces
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is also needed to capture the correct physical behavior. When dealing with high Reynolds number flows, a standard eddy
viscosity model does not properly account for turbulence modulation by particles, and significant physical processes might
be compromised. Accounting for the exchange of angular momentum from the fluid phase, leading to lift forces that are
otherwise neglected, is of interest as well. These shortcomings could be addressed by improved models developed using par-
ticle-resolved DNS data. With these considerations, the approaches described in this paper are shown to work well on a
range of cases. A filter length scale was chosen such that microscale processes (e.g., collisions and drag) were handled with
well-accepted models from the literature and mesoscale features were resolved explicitly, allowing to properly capture
important multiphase phenomenon including particle segregation and bubbling. However, this segregation in length scales
limits the simulation strategy to Oð108Þ Lagrangian particles, and more work is required for scale-up. Furthermore, the effi-
ciency of the proposed methodology, in terms of accuracy versus computational expense, remains to be investigated and
compared to that of existing approaches.
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